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A honeycomb graph perfect matchings enumeration 

M. Desainte-Catherine 
LaBRI*, Universit~ Bordeaux I, 351, cours de la Libdration, 

33405 Talence Cedex, France 

Received 9 December 1991; revised 3 April 1992 

We consider honeycomb graphs with a trapezoidal shape and based on pentagons. 
We give an exact formula for the number of perfect matchings of these graphs. 

1. Introduction 

Perfect matchings enumeration is of particular interest in different fields. In 
quantum-chemical theory, perfect matchings enumeration is used in several resonance 
theoretic methods [1-5].  Moreover, in statistical mechanics, enumeration of dimer 
coverings is quite equivalent to the solution of the two-dimensional Ising problem 
[6-9]. Uses and methods for enumeration of perfect matchings in honeycomb 
graphs are reported in refs. [10,11]. The set of methods includes: combinatorial 
recursion methods, the determinantal method, the Pfaffian method, methods based 
on graph decomposition, transfer matrix method, correspondences to sets of non- 
intersecting paths, and others. Our method is of the latter kind and it is inspired by 
the resolution method for the Ising problem. Solving this problem consists in 
enumerating closed sub-graphs of the lattice (i.e. graphs without vertices of odd 
degree). This requires the enumeration of the perfect matchings of another lattice, 
obtained from the original one by a certain transformation. Then, in order to calculate 
the Pfaffian, which represents the generating function of the perfect matchings, the 
lattice borders are identified and a cyclic block matrix representing the lattice is 
obtained. 

In this paper, we consider a honeycomb sublattice with trapezoidal shape (see fig. 
1), based on pentagons. Such a graph can be characterized by two parameters: 

• p denoting the number of pentagons, 

• n denoting the height of the graph, i.e. the number of hexagons stacked on 
a pentagon plus 1. 
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Fig. 1. A honeycomb graph with a trapezoidal shape. 

n = 7  

p = :1.7 

We show that the number of perfect matchings of a pyramid based on p - 1 
pentagons and of height n is equal to 

1-I i + j + p - n  
l<i~j~n i + j ' 

w h e r e p - n i s  even, p > l  and n > 0 .  
Since our lattice involves strong boundary conditions, identification of the 

borders is impossible. Hence, we have to enumerate directly on a finite sublattice. 
In a similar way to the resolution methods recalled above, we associate to our 
honeycomb lattice a square lattice such that the perfect matchings of  the first lattice 
are in bijection with the non-intersecting paths of the second lattice. We have shown 
in ref. [12] that these paths are also in bijection with certain Young tableaux of  
which we know the number. We develop a particular case enumerated by the 
Catalan numbers, and we give a direct and very simple proof, not involving the 
Young tableaux. The reader will find a survey of  other perfect matchings enumerations 
on different honeycomb graphs in ref. [13]. In particular, the lattice displayed in 
the scheme below, which is very similar to ours, admits a number of perfect matchings 
which is a simple binomial. 
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2. Preliminary definitions 

Let G = (A, S) be a graph where A is the set of  edges and S the set of  vertices 
(A c_ S x S ) .  

(1) We define the contraction operation (see an example in fig. 2) of  the 
edge a within the graph G. The result of  this operation is a new graph G '  = <A', S') 
such that: the two extemities sl and s2 of  the edge a are replaced by a single vertex 
s, all the edges which admitted one of  the two vertices sl or s2 as an extremity are 
then connected to the new vertex s. 

4 

Contraction 

of a 
u 

S 

a 2  

Fig. 2. Example of a contraction. 

(2) A path w of  a graph is a sequence of  vertices, w = (sl, s2 . . . . .  s ,)  such 
that for 1 < i < n - 1, (si, si ÷ 1) is an edge of  G. 

(3) Disjoint paths or non-intersecting paths have no vertices in common. 

(4) A matching of  a graph is a set of  disjoint edges. 

(5) A perfect matching of  a graph is a matching such that each vertex of  the 
graph belongs to an edge of  the matching. 

3. The bijection between perfect matchings and configurations of paths 

DEFINITION 3.1 

Let Ge,. be a honeycomb graph with a trapezoidal shape based on p -  1 
pentagons and of  height n, and such that p and n are of  the same parity. 

Note: The honeycomb graphs with trapezoidal shape, which are drawn as in fig. 1, 
have four types of  edges: 

(1) North edges, or vertical edges. 

(2) East edges, or horizontal edges. 

(3) Northeast edges. 

(4) Northwest edges. 
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3.1. THE TRANSFORMATION 

The transformation we shall introduce in this subsection is such that there is 
a bijection between the perfect matchings of the original graph Gp,. and the 
configurations of non-intersecting pa~ths of the transformed graph Gtp,.. Such a 
bijection is introduced by Klein and Zivkovi6 [5], between perfect matchings and 
non-intersecting paths on the same lattice. The bijection is very similar to ours. 
They remove dimers of the matching from certain edges, and put dimers on other 
edges so that non-intersecting paths appear. We contract edges (the same as the 
ones from which Klein and Zivkovi6 remove dimers), and we obtain a square lattice 
where the paths are automatically constructed.: 

We build the graph G~,. by contracting (see section 2) all the Northwest edges 
of the graph Gp,. (see definition 3.1). The transformation is illustrated in fig. 3. 

stair 
/ g- 

k V 

base 

Fig. 3. Transformation of G4 into G~. 

The southern vertices of the graph Gtp,. will be called the base vertices, and 
the vertices located in the Northwest will be called the stair vertices. The number 
of base vertices of Gp,. is equal to p and the number of stair vertices is equal to n. 
We apply an orientation (indicated in fig. 4) such that every edge is directed toward 
North or West. 

Fig. 4. Orientation of the transformed graph. 

Now, we want to show thateach perfect matching of Gp,. is in bijection with 
a set of disjoint paths of G~,., joining the base vertices and the stair vertices, 
respecting the orientation (see example in fig. 5). We apply the transformation to 
a graph carrying a perfect matching. The dimers carried by a contracted edge all 
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Fig. 5. A G6, 3 perfect matching and the corresponding G~, 3 disjoint paths. 

disappear. Other dimers get a vertex in common in pairs, which is the vertex 
replacing the contracted edge. 

Let us give a local definition of the bijection by examining cases of  (see 
fig. 6) the transformation of a contracted edge of Gp,. carrying a perfect matching 
(the other edges remaining unchanged). 

% 

U 

In~ernal edges 

Northeastern corner 

Eastern edges 

/y 

/y 

Northern edges 

Fig. 6. The different cases of  the bijection. 
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The transformation definition implies: 

• On all but the base and the stair vertices of G~,,,, the transformed configuration 
has an even degree. Then the configuration obtained on G~,n contains a set 
of paths going from a base vertex to a stair vertex. 

• Vertices of degree four do not appear, so the paths of Gte,n are disjoint. 

• Each sequence of two consecutive edges of a path goes either Northnorth, 
Westnorth, Northwest, or Westwest, so the paths respect the graph orientation. 

• Every stair or base vertex belongs to a path because they are kept unchanged 
by the bijective transformation, and they all carry an edge of the Gp,n perfect 
matching. 

. 

p m  1. 

Part i cu lar  case  g iv ing  the Cata lan  n u m b e r s  

Let us examine the particular pyramid based on p pentagons and of height 
The top of  this pyramid is always composed of  two hexagons. 

DEFINITION 4.1 

Let Gp be a honeycomb graph with trapezoidal shape based on p pentagons 
and of height p - 1. 

THEOREM 4.2 

The number of the honeycomb graph Gp perfect matchings (see section 2) is 
equal to the Catalan number: 

Mp = P +'----T 

The proof of the theorem begins with the bijection between the perfect matchings 
of  Gp and the disjoint paths of the transformed graph G~. Then we prove that the 
number of those paths are the Catalan number by putting them in bijection with 
objects counted by those numbers, 

Since the number of stair vertices is equal to the number of base vertices 
minus two, the set of paths of the graph G~ contains paths going from a base vertex 
to a stair vertex, and one path going from a base vertex to another base vertex. This 
path is always made of  only one edge and will be called dimer (which usually 
denotes a non-directed path). So, let us divide each configuration of disjoint paths 
into three parts (see fig. 7): 

• the dimer, 

• the right-dimer paths, which are the paths going from a base vertex located 
on the right of the dimer, 
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left-dimer right-dimer 
paths paths 

Fig. 7. A configuration of disjoint paths. 

• the left-dimer paths, which are the paths going from a base vertex located on 
the left of the dimer. 

Notation 

Let w be a path and p a step of w. We shall denote by h(p) the height 
of step p, which is equal to the number of North steps preceding p in the path w 
according to the orientation. Moreover, let us enumerate the paths of the right-dimer 
set from right to left. 

Since the paths are disjoint and respect the graph orientation, the left-dimer 
paths are all made of vertical steps, without a West step (see fig. 7). Hence, they 
are determined by the base vertex from which they start. For the same reasons, all 
the right-dimer paths have two West steps. Thus, a configuration of  disjoint paths 
may be given by 

• the number of right-dimer paths, 

• the two height sequences of the West step of the right-dimer paths. 

PROPOSITION 4.3 

There is a bijection between the set of configurations of disjoint paths defined 
on G e and the set of all pairs of sequences: 

( ( a i ) l < i ~ l , ( b i ) l < i < l )  , O<_l<_p-1, 

where I is the number of right-dimer paths, a i = h(pl(wi)) and b i = h ( p 2 ( w i )  ) ,  where 
Pl(Wl) and pE(wi) are the two West steps of the paths wi, and h(pl(wi) ) <_ h(pE(wi)), 
which satisfy, for i 6 { 1, 2 . . . . .  /}: 
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I 
O < a i < p - 1 ,  

O<_bg < p - 1 ,  

ai < bi, (1) 

ai < a j ,  Vi < j ,  

bi < b i , V i  < j .  

The sequences (ai) and (bl) of  the proposition have been introduced by 
Kreweras [14] as "6ventails de segments". They are counted by the Catalan numbers. 

Let us recall a bijection between those sequences and the so-called Dyck 
words, using Motzkin words. Let us first recall some definitions and notations: 

• An alphabet X is a finite set of  letters. 

• The free monoid X* is the infinite set o f  all the words that can be constructed 
from X, i.e. the finite sequences of  letters o f  X. 

• Concatenation of  words is denoted by juxtaposition. If  v = abc and w = ghj, 
then the concatenation of  v and w is denoted v w  and is equal to abcghj. 

• The length of  a word is its number of  letters. 

DEFINITION 4.4 

Let X = {x, ~} and Dn be the set of  Dyck words of  length 2n defined by the 
conditions: 

u = tar (concatenation of  v and w), 

V u ~ X ,  u ~ D ,  ¢=~ V(D,W) E(X')  2, Ivlx<lvl~, 
lulx=lul~, 

where l ulx means the number of  x of  the word u. 

DEFINITION 4.5 

Let A = {x, 2, R, B}, M c be the set of  coloured Motzkin words defined by the 
same conditions on x and 2 as the Dyck words for the letters x and 2 (no conditions 
on the letters R and B). Let M~ be the set of  coloured Motzkin words with n letters. 

LEMMA 4.6 

There is a bijection between the couples of  sequences satisfying condition (1) 
and the set M~,_ 1. 

Proo f  

Let i < k - 1 ,  and ( a j ) l s j a t  and (bj ) l<j~t ,  satisfying (1); then let 
u = ulu2. • • uk _ 1 be the word associated to those sequences by the following bijection: 
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Vi, l < i < k - 1 ,  

i ~ (aj) l~j~t ,  i ~ (bj) l~j~ l ::~ U i = R, 

i ~t (aj) lSj<l,  i ~ (bj)l<j< t ~ ui = B, 

i ~ (aj) l~j~/ ,  i ~ (by)l~jSl =~ ui = x,  

i ~ (aj) l~j~l ,  i e (bj)l~j~l ~ ui = "x. 

We easily verify that u is a coloured Motzkin word. 

LEMMA 4.7 

There is a bijection between Men and Dn +1 (see definitions 4.4 and 4.5). 

P r o o f  

This bijection is classical; let us briefly recall it. Let ¢ be the following 
morphism 

: {R,8,x,~}* ~ {x,x}*, 

such that 

(y, y') e {R, B, x, X}, q~(y, y') = ¢(y) ¢(y'). 

The morphism ¢ is determined by 

~(R)  = xx,  9 ( 8 )  = xx,  ~ (x )  = xx, ~ ( x )  = ~ .  

Let wc be a coloured Motzkin word with n letters; its image w by the bijection is 
defined by w = xgp(wc)2. 

5. Enumeration of perfect matehings in the general case 

THEOREM 5.1 

The number of Ge,, perfect matchings (see section 2) is equal to 

l + j + p - n  
Np,n = 1-I i + j  

l<i<j<n 

P r o o f  

In ref. [12] we may find a bijection between the paths obtained by transformation 
of the graph Gp,,, and certain Young tableaux with bounded height (see fig. 8). This 
bijection constructs the tableau from the list of the numbers associated to each 
vertical step belonging to a path of the configuration (see fig. 8). Note that these 



142 M. Desainte-Catherine, Perfect matchings of honeycomb graphs 

A l o  [11 
A9 412 
A8 ~ ~  
A~ 

N 5  4 

A4 g__l ,,,~ .. t 
A3 :~ 
A2 
A~ i 

Fig. 8. A path configuration and its associated Young tableau. 

numbers are not exactly those introduced as the step heights in the preceding proof. 
Then the Young tableaux are put in bijection with some fans of Dyck paths, using 
successive lightings and shadowings of cloud, an intermediate object. Then the final 
formula is obtained by computing Hankle determinant associated to the Dyck paths 
(from Gessel-Viennot bijection [15]) using the so-called qd-algorithm from Pad6 
approximants theory. 

1 

p - 1  

1 1 

1 1 

• , .  1 . .  , . . . . .  

1 2 1 0 .. 0 
1 0 0 .. 0 

0 
Fig. 9. Pfaffian enumerating the Gp,, perfect matchings. 

Moreover, a combinatorial interpretation of some Pfaffians involving the 
configurations of disjoint paths of the graph Gp,n is given in refs. [16, 17]. This 
study provides another expression enumerating the perfect matchings of the graph 
Gp,n involving the Pfaffian of the table represented in fig. 9, which is different from 
the Pfaffian usually used to enumerate perfect matchings in statistical mechanics. 
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